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LElTER TO THE EDITOR 

On the range of validity of the 6 - E expansion for 
percolation 

F Fucitof and G Parisi$ 
t Istituto di Fisica ‘G Marconi’, Universita di Roma, INFN Roma, Italia 
$ Istituto di Fisica della Facolta di Ingegneria dell’Universith di Roma, INFN Frascati, Italia 

Received 10 August 1981 

Abstract. In 6 - E dimensions the critical properties of percolation can be computed starting 
from a (p3 theory having the same symmetry of the one-state Potts model. In this paper we 
argue that this fixed point must be unstable with respect to a p4 interaction in two 
dimensions; therefore a (p4 perturbation is relevant. This suggestion is confirmed by an 
explicit two-loops computation. 

In the framework of the renormalisation group approach to critical phenomena, the 
fixed point plays a central role (Amit 1978, BrCzin et a1 1976). Normally the structure 
of the fixed points can be found using the expansion in powers of E = D, -D  (for D > D, 
only gaussian fixed points are present and the critical exponents are trivial). 

Also for E not small it is generally believed that the results of the E expansion are 
qualitatively correct. This seems not to be the case for two-dimensional percolation. 

Percolation can be considered as the limit q + 1 of the q-state Potts model 
(Kasteleyn and Fortuin 1969, 1972); the corresponding field-theoretical Hamiltonian 
(Wallace and Zia 1975) is 

(1) 
1 2 2  H = dDx[$(a,qi)2+Zp V i  +(1/3!)gqiPj(P/cQijk +O(q4)1, J 

Qiik being a tensorial coupling (it will be defined in equation (3)); the index i ranges 
from 1 to N. However if one uses the Hamiltonian (1) to compute (or in the D = 6 - E  

expansion or in the fixed-dimension loop expansion) the exponent 77, one finds a stable 
negative result (77 = -0.2 + -0.3).  

This is at variance with the positivity of the index p = (D - 2 + 77)v/2. The failure of 
the renormalisation group leads us to suggest that the interaction becomes unstable 
with respect to a (p4 interaction when the dimension D of the space is smaller than d 

The aim of this note is to compute the anomalous dimension of the q4  operator using 
the loop expansion at fixed dimensions (Parisi 1980). Although the primary target of 
this paper is percolation, we present the results for the q-component Potts model. 

Now let us consider the Hamiltonian (1) to which we shall add a piece, a term whose 
perturbation we want to analyse, of the form 

(d > 2). 
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where, for the Potts model, the tensorial couplings S,  F, Q (defined in equation (1)) are 
(Wallace and Zia 1975) 

Qllk = 1 1 1 1  l k ,  

where the 1: obey 

Fllki = & l =  &&$kl +permutations), ( 3 )  

1 l p l f  = ( N  + 1)S"P - 1, 

a" 

L2 a 

1 1; = 0, 1 1:1; = ( N  + l)&, (4) 
a OL 1 

and where the Greek indices run from 1 to N - 1 while the Latin indices run from 1 to N. 
Naive dimensional power counting will tell us that for D > 4 the terms in (2) have 

negative dimension (the coupling constants ho, cy0 have naive dimension 4 - D ) ;  is this 
enough to conclude that the insertions of (p4 operators are less singular than the p3 term 
and cannot perturb it? Certainly not! We must know the dimension of the (p4 operator 
at the non-trivial fixed point, not at the gaussian fixed point. 

In principle the dimension of the (p4 operator can be computed using the Callan- 
Symanzik equation for the insertion of a (p4 operator. Unfortunately things are not so 
simple because of operator mixing. In 6 -s  dimensions there are eight operators of 
naive dimension eight. They are: 

0 1 ( x )  = (1/4!)Sq4(x), 

0 3 b )  = -(1/3!)(m2)-"'4Q,,k(p, ( X ) c P l ( X ) b k ( X ) ,  

0 4 ( X )  = ~(m2)-"2(pI(X)02(pl(X),  

0 2 ( x )  = (1/4 !)F(p4(x), 

OS(X) = ; (m2)-"/202[(p2(x)l ,  

where we have inserted the m 2  term to reduce the Oi operators to the same naive 
dimension. These operators mix among themselves in 6 - E dimensions at the first 
order in E .  However, in two dimensions these operators will have very different naive 
dimensions and there is no reason to restrict the choice to this set (e.g. we could also 
include a (p5 operator). Note that operators of different naive dimensions mix because 
the coupling constant is not dimensionless as in six dimensions. After some reflection 
we have decided to consider on!y the two (p4 operators, this being the only sensible 
approximation. 

If we compare the results for the one-loop expansion obtained with (Amit et a1 
1977) and without mixing (see table 1) we see that the results of this approximation are 
rather satisfactory. 

Amit et a1 (1977) considered, at the order of one loop, all the eight operators of 
formula ( 5 ) .  Doing the computation, they were able to combine these operators in such 
a way as to obtain a 5 x 5 matrix from which one could extract the anomalous 
dimensions of the Oi. 

This matrix was reduced again by means of the equation of motion for the fields cp to 
its final form of a 2 x 2 matrix. The values of the anomalous dimensions which we have 
given in table 1 are just the eigenvalues of this matrix. In the fixed-dimension formalism 
one works in the massive theory and the critical point is reached when the renormalised 
dimensionless coupling constant g is equal to g, (p(gc)  = 0). One then defines the 
renormalised (p's"', cpF' operators which are proportional to the bare ones (pi"' = Z i k ( p k  
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Table 1. We compare the anomalous dimension of the (p4 operator with (A,,,) and without 
(Awo)  operator mixing. N is the number of components of the field (pi .  

AI:  (6)r(0/2)r[(8-0)/2]/4, Az: (6)A/2, AS: (12)A/2, Ad: (8)A/2, 
As: (9)B/6, Ag: (12)B/6, AT: (3)C, As: (4)C. 

0 -0.88 -3.78 -0.98 -4.26 
1 0 - 4 . 8 ~  0 -1le 
2 -6.88 -12.88 -10.38 -15.48 

where i = F, S.  If one considers the vertex of these renormalised operators with four 
renormalised Q fields, the z are fixed by the condition 

rgijkl = Sijkl. (6) (4)F - F,, 
r (R)i jkl-  ykl, 

A Callan-Symanzik equation for the vertex can be easily derived: 

where m, g are the renormalised mass and coupling constant, R stands for renor- 
malised, A is the operator mza/am2, riy& is the usual vertex function but with the 
insertion of an operator pi, and Yik (at zero external momentum) is the matrix which 
will give us the anomalous dimensions of the operators (p4 

In figure 1 we show the Feynman graphs which enter AI'g)k, while in table 2 we 
illustrate their numerical values and their multiplicities. To make the picture complete 
we now give also the tensorial couplings for the diagrams of figure 1: 
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A2 A3 

A5 A7 A8 

Figure 1. Feynman graphs involved in our computation. 

Table 2. Numerical values and multiplicities (in brackets) of the diagrams of figure 1. 

D A B C 

5 0.145 -0.160 0.2331 
4 0.083 -0.063 0.1147 
3 0.047 -0.024 0.0582 
2 0.027 -0.008 0.0301 

Table 3. Anomalous dimension of the (p4 operator for various D. 

D A 1  A2 

5 -1.33 -8.74 
4 -5.49 -8.64 
3 -3.63 -6.15 
2 +1.23 -1.69 

These tensorial couplings have been checked by doing the computation first by hand 
and then using an algebraic computer program (SCHOONSCHIP). At the end we have 
checked that for the Ising model (N  = 1) one of the two eigenvalues was zero as 
predicted by the theory. The results in the percolation limit N+O (Kasteleyn and 
Fortuin 1969, 1972) for various values of the dimension are shown in table 3. These 
values are obtained by diagonalising the matrix 

where 
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The values of g* that we have used are taken from Fucito and Marinari (1981) and 
are obtained by the pseudo E expansion method (Le Guillou and Zinn-Justin 1980). 

Before analysing the results we have to fix the irrelevance condition for the (p4 

operators. 
Solving the Callan-Symanzik equation at the fixed point, we obtain that the 

four-point vertex (a) without and (b) with insertion of the operators is: 

where p is the momentum flowing through the insertion and qi is that flowing through 
the external legs. If p is the scale of the momentum qi, dimensional analysis tells us that 
rl"d, and r',4k1 scale like 

This last vertex function defines also the renormalised coupling constant of 01 and 
02. The irrelevance condition is that the coupling constants of 01 and O2 go to zero 
faster than g when the scale p + 0, and q i / p  remains finite. In the formula, we have 

Positive hk are a sign that the perturbation induced by (p4 is not irrelevant. We have 
now to interpret the fact that at D = 2  one eigenvalue is positive. All the field- 
theoretical evaluations of the critical indices of percolation (both the E expansion and 
the fixed-dimension method), although they give good results for dimension 5 s D s 3, 
fail in predicting the sign of the exponent 7 in D = 2. In fact, just in two dimensions, 
scaling laws give p = 7) (p  is the critical index of magnetic susceptibility) and so, going 
from D = 3 to D = 2, the anomalous field dimension 77 has to change sign, passing from 
negative to positive values. The positive value of A k  for D = 2 points out that the pure 
(p3 fixed point is no longer stable and that if we want to have a correct value of 77, at the 
order of two loops, we should probably do a three-coupling-constant expansion. 

2-&-Ak>0, 
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